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LINEAR PROGRAMMING APPLIED TO OPERATIONAL DECISION MAKING 
IN WEATHER RISK SITUATIONS 

ROBERT E. HELBUSH 

Weather Bureau Southern Region Headquarters, ESSA, Fort Worth, Tex. 

ABSTRACT 

The linear programming algorithm is applied to’assist decision makers in selecting an optimal course of action in 
situations involving weather-induced losses or gains. 

1. INTRODUCTION 2. DEFINITION 
Gleeson [5] has developed two methods for determining 

the minimum expense strategy for conducting an opera- 
tion sensitive to a predictand whose occurrence can be 
divided into a finite number of mutually exclusive and 
exhaustive classes. Here we have a decision maker with 
freedom to select from 8 number of operational decisions 
Dl, Dz, . . . D,, each of which is subject to occurrence 
of various predictands Xl, Xz, . . . X ,  resulting in 
particular economic gains or losses, aid (table 1). Gleeson’s 
Method A essentially consists of systematic examination 
of the payoff matrix, and selecting for each decision that 
combination of weather frequencies that will minimize 
the expected economic return Ei.  The decision which 
maximizes the E i  then becomes the optimal decision. 
Method B utilizes the mathematical theory of games. 

Epstein [6] has criticized Gleeson’s methods on the 
grounds that it is unrealistic to suppose that nature can 
select its own best strategy. However, as noted by Thomp- 
son [7], for certain types of decision makers the minimum 
economic expectation model can be a valid means of select- 
ing the course of action providing maximum benefits. 

It is known [l] that any zero-sum two-person matrix 
game problem can be expressed as a linear program. This 
equivalence permits formulation of a generalized method 
based on linear programming considerations which can be 
used in lieu of Gleeson’s Methods A and B. In addition, 
linear programming techniques are usually more efficient, 
since the direct solution of large matrix games is a cumber- 
some process. 

TABLE 1.-Economic gains and losses, ai,, f o r  various decisions Di and 
predictand outcomes X i  (after Gleeson 151) 

Predictand 

XI . . .  Xi . . .  X r  !- 

1 Dm 1 a“, . . . a”i . . . amk 

In the standard linear programming problem [l, 21 
one wishes to minimize a linear function 

z= 01x1 + 02x2 + . . . + cnxn 
(called the objective function), subject to a set of m 
linear inequalities 

and the further constraints 

XllO, x,>o, . . ., x n 2 0 .  

It is also customary to write the set of inequalities so 
that b, 2 0 ,  adding or subtracting if necessary a sufficient 
number of additional positive variables, called “slack 
variables,” to permit this. 

The problem is sometimes stated in terms of maxi- 
mizing an objective function, but since Max(2) 
- - -Min(-Z), these are equivalent requirements. 

3. SOLUTION OF THE LINEAR PROGRAMMING 
PROBLEM 

The most widely accepted method of solution for linear 
programming problems is the “simplex” method, origi- 
nated by Dantzig [4]. While a t  first glance the simplex 
algorithm may appear onerous, the method is purely 
mechanical and imposes no higher mathematical demands 
on its practitioners than a knowledge of elementary linear 
algebra. Moreover, the method is readily computerized 
and “canned” computer programs for solving linear pro- 
grams with large numbers of variables have been devised 
and can be purchased if desired. 

The basic features of the simplex method can be shown 
by the following hypothetical problem, based on consider- 
ations derived from the work of Thompson and Brier [3]. 

Example: Given an operation sensitive to a certain 
weather event and having an associated cost-loss ratio 
C/L. What values of a, b,  c, and d, the frequencies of 
occurrences and nonoccurrences of the weather event, 



~ 

December 1968 

Bask3 

P7 

PS 

Pa 

Po 

- 

Robert E. Helbush 

Cost PO PI P; PI PI Pa PI PI P8 

W N 1  1 1  1 0 0 1 0  

W K O  0 1 1 0 0 0 1  

0 0 - c  O L - c  0 l o  0 0 

o o o c o c - L o 1 o o  

-_______------ 

877 

would provide an operator with the conditions for a least 
expensive operation? 

Here we wish to minimize 

E= C(b+d) + Lc 
a+b+c+d=N 

subject to 

c + d = K  (i.e., climatology is 

CIL>-c  -a+c 
d C/L 5- 

b+d 
and 

a 2 0 ,  b 2 0 ,  ~ 2 0 ,  d 2 0 .  

nvarian t) 

After rewriting the above equations and substituting 
Xl=a,  Xz=b, X3=c, and X4=d, the linear program 
becomes, 

(1) 

(2) 

X3+XI=K (3) 

-CX,+(L-f2)X3+X,=O (4) 

cxz+ (C- L)X,+X,=O (5) 

Minimize E= CXZ+ LX,+ CX, 

subject to 
Xi + Xz + X3+ X,=N 

where X ,  and x6 are nonnegative slack variables intro- 
duced to eliminate the inequality signs. The equations are 
arranged in tabular array (A) in table 2 .  Here P 1 ,  P2, 
. . . P6 are vectors associated with each of the variables 
in the set of equations above. The simplex procedures 
require a “basis,” i.e. a set of unit vectors equal in number 
to  the equations to be operated upon. By a set of unit 
vectors is meant a vector set such that 

a) One element of the vector is equal to “1”; 
b) All remaining elements of the vector are zeroes; 
c) No two vectors of the set contain the element “1” 

in the same row. 
I n  array (A) of table 2, vectors P, and P, have been 

added to the set of equations in order to provide the 
necessary basis. The column headed “Cost” in the array 
refers to  the coefficient in the objective function of each 
variable associated with the basis. Customarily, if the 
objective function does not contain a certain variable, 
zero is entered for the cost (e.g., costs for P, and P6 are 
zero). However, for the costs of those vectors added to 
augment the matrix in order to  provide a basis, we 
ascribe an indeterminate cost W. Our lack of knowledge 
of the exact costs for P7 and P, need not concern us here, 
however, for the simplex algorithm is begun by eliminat- 
ing these artificial vectors from the basis and replacing 
them by selecting from the vectors of interest Pl, 

To do this, select one of the vectors, say P,, in the first 
row, and replace it by P,. However, merely putting P l  
in place of P7in the first row does not suffice, since P I  taken 
in conjunction with P,, P5, and does not form a basis. 

Pz, . P,. 

We, therefore, transform into a basis vector by chang- 
ing -C, the third element in the column vector P I ,  to a 
zero. This is effected by multiplying each element of the 
first row of the array by C and adding each to the cor- 
responding element in the third row, as shown in array (B). 
The cost for PI as determined from the objective function 
is zero. 

We now introduce a suitable vector in lieu of Pa. The 
vector P, will not be satisfactory since its coefficient is 
zero. Consequently, either P, or P, are suitable possi- 
bilities. We select P, and proceed to incorporate it into 
the basis by first multiplying row 2 by -1 and adding 
the result to row 1, then multiplying the row by - L  and 
adding to row 3, and finally multiplying by L-C and 
adding to row 4. The results are shown in array (C). 
Here, for convenience, the augmented vectors P7 and Pa 
have been dropped from the array, since they have served 
their purpose and are no longer in the basis. 

In array (C), the entry Zj-Cj refers to the product of 
the column vector times the cost minus the appropriate 
coefficient from the objective function. For example, 
for P3,  
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5 D3 
E D ,  

The signs of the Z,-C, are crucial since 1) only vectors 
having 2,-C,>O may be selected for the basis, and 2) 
when all 2,-C,(j>O) are finally 5 0 ,  the simplex pro- 
cedure has generated the minimum solution, and the 
iterative process is halted. We note that in array (C), 
Z3-C3=C-L<0, since for any problem C/L <1;  
hence all Z,-C,>O(j>O), and we have now generated 
the minimum extreme point solution. In  fact, the mini- 
mum value of the objechive function is given by Zo-Co= 
CK. The minimum values appear in Po of array (C) and 
are as follows: 

5 0 -1 -2 
2 3 1 - 1  

-4 1 5 -1 
-1 0 1 1  

XI = N -  K,  X4 = K,  X, = C(N- K )  , and X, = K(  L - C )  . 

Translating this result into our original problem state- 
ment, we find the most favorable milieu in which to con- 
duct a weather sensitive operation is one where 

a = N - K ;  b = O ;  c=O; and d=K;  

Le., “perfect forecasts” are available. The result, of course, 
obviously could have been foreseen without the necessity 
for undertaking these calculations, but the example has 
been instructive as an illustration of the mechanics of 
the simplex procedure. ‘The technique can now be applied 
to a more abstruse class of problems. 

4. A GENERALIZED METHOD FOR SELECTING 
OPTIMAL COURSES OF ACTION 

Given an arbitrary matrix game as follows: 

Then an equivalent linear programming problem is to find 
Xi 2 0 and the minimum number V (the game value) such 
that 

al1X1+a~&+ ... +alnXn 5V 
a z r X l + a z z X 2 + .  .. + & n X n  I V 
a m i X i  + a m z X 2 + .  + a m n X n  <V 

TABLE 3.-Payoff matriz for Farmer Smith (after Gleeson [5]) 

Predictand (rainfall) 

XI Xl xs x4 

pi” --...._._..._ 0.12 0.46 0.77 0.31 
P i ‘ - - - _ _ _ _ _ . _ _ _ _ _  0 0.12 0.40 0.04 

and 
x , + x 2 +  ...+ x,= 1 

(i.e., the sum of the probabilities equals one). 
Example: The general method of solution will be 

shown by applying it to one of the examples in Gleeson’s 
paper. The example concerns a Farmer Smith, who is 
faced with the decision of which weather crop to select for 
planting next year. His payoff matrix is shown in table 3; 
here pj’ and pi are the upper and lower confidence limits 
for the frequencies of the predictand classes X i  (light, 
moderate, heavy, and excessive rainfall). 

Smith, naturally, wishes to select a strategy which will 
maximize his expected gain regardless of the strategy em- 
ployed by his fictional opponent, Nature. That is, he 
wishes to select a decision vector D=(dl, d2, d 3 ,  d 4 )  which 
will maximize his minimum economic expectation, return- 
ing him a t  least V units, where V is the value of thegain. 
The linear program then is to minimize V, subject to 

5 x , - x 3 - 2 x 4  5v 
2 x , + 3 x 2 + x 3 - x 4  5v 
- 4 x 1  + xz+ 5 x 3  - x 4  I V  

- x l + x 3 + x , I v  

0 5x1 50.12 
0.12 5 x 2  50.46 
0.40 5x3 50.77 
0.04 <X4 50.31 

TABLE 4.--Tabular arrays of the results of the simplex computation with optimal solution given i n  array ( J )  

PI+ Po in basis 
5 -1 -2 1 w w w w  

B c Po PI Pa Pa P, Pa P6 p7 ps Po plo pll PI, PIS pu PIS PIS p17 PIS p,o pm pl1 

0 0  -3 3 2 1 - 1  1 
0 0  -9 1 6 1 - 1  1 
0 0 -6 2 3 -1 1 
0 0.12 1 1 
w 0.12 1 -1 1 
0 0.46 1 1 
W 0.40 1 -1 1 
0 0.77 1 1 
w 0.04 1 -1 1 
0 0.31 1 1 

w 1  1 1 1 1  1 
1.56 1 2 2 2 -1 -1  -1 
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TABLE 4.-Continued 

P4-, P I 8  
5 -1 -2 1 

8 79 

w w w w  

B c Po 

P g  .................................. 

0 0.36 
0 1.08 
0 0.72 
5 0.12 

w 0.12 
0 0.46 

W 0.40 
0 0.77 
w 0.04 
0 0.31 

w 0.88 
0.60 
1.44 

P I  Pz Pa P4 P 5  

3 2 1 - 1  
1 6  1 - 1  

2 3 -1 
1 

1 
1 

1 
1 

1 
1 

1 1 1  
1 2  

2 2 2  

1 3 
1 9 

1 G  
1 

-1 
1 

-1 
1 

-1 
1 

-1 
5 

-1 -1 -1 -1 

1 

1 

1 

1 

0 0.32 3 2  -1 1 3 1 
0 1.04 1 6  -1 1 9 1 
0 0.60 2 -1 1 6  3 
5 0.12 1 1 

w 0.12 1 -1 
0 0.46 1 1 

W 0.40 1 -1 
0 0.77 1 1 

0 0.27 1 1  
-2 0.04 1 -1 

w 0.84 1 1  -1 1 
0.52 1 5 2 
1.36 2 2  -1 -1 -1 1 

1 

1 

1 

.1 -2 1 IV w 11' 

-1 0.16 
0 0.08 
0 0.28 
5 0.12 1 

w 0.12 
0 0.46 

W 0.24 
0 0.61 

-2 0.04 
0 0.27 

w 0.68 
0.36 
1. OI 

31 
-8 
-3 

1 
1 

-% 
- 31 

-M 
- 36 
-1 

1 -M M 
2 -3 1 

-1 1 

M -% 
M -M 

1 

M -M 
-M -M 

1 -1 

31 

3 
1 

- 

- 31 
-31 

-54 
% 

-4 

M 
-2 

2 

-1 1 
1 

-1 -M 1 
1 -M 

-1 
1 1  
M 1 
34 

-1 0 

.1 -2 1 w w  W 

-1 0.18 
1 0 . 0 4  
0 0.28 
5 0.12 1 

w 0.12 
0 0.46 
w 0.22 
0 0.59 

-2 0.04 
.O 0.27 
W 0.66 

0.38 
1.00 

-M 
-4 
-3 

1 
1 
u 
M 

% 
-94 

3 

1 -w w 
1 -31 M 

-1 1 

% -% 
% -% 

% -% 
-54 w 
M -M 

1 

31 

3 
1 

-1 
1 

-31 
-35 

-1 

-94 
f'r 

-4 -1 -1 

-1 
2 

1 

1 
1 

-1 
1 1  
1 1 

2.52 
1 
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TABLE 4.-Continued 

P S +  P I 1  

5 -1 -2 1 W W 

-1 0.24 1 
1 0.52 
0 0.64 
5 0.12 1 
0 0.12 1 
0 0.34 
W 0.16 
0 0.53 

-2 0.04 
0 0.27 
W 0.48 

0.80 
0.64 

1 

-% M 
1 -35 M 

-1 

% -% 
% -% 

?4 -w 
-54 ?4 
Pi -% 

I 

34 -% 
-4 

3 -3 
1 

-1 
1 

-94 M 
-31 M 

-94 95 
7 4 1  

-4 2 

-1 
2 

1 
-1 

1 
-1 

1 1  
1 
1 

-1 1 

1 

1 

PIC+ P l d  
5 -1 -2 1 W 

-1 0.40 1 
1 1 . 4 8  
0 1.28 
5 0.12 1 
0 0.12 1 
0 0.34 
0 0.64 
0 0.37 

-2 0.04 
0 0.27 
W 0.32 

1.47 
0.32 

I 

-1 
1 -1 -9 -1 -6 -1 

-1 1 -3 -1 -4 2 
1 

-1 
1 1  

1 -1 -6 2 -4 
1 1  

-1 

-1 1 1 1 
-1 -4 -1 -5 1 

-1 1 1 1 

1 1  
1 

PI¶+ P I 9  
5 -1 -2 1 W 

-1 0.40 1 -1 
1 1.75 1 -1 -9 -1 -6 1 
0 0.74 -1 1 -3 -1 -4 -2 
5 0.12 1 1 
0 0.12 1 -1 
0 0.34 1 1  
0 0.64 1 -1 -6 2 -4 
0 0.37 1 1  

-2 0.31 1 1 
0 0.27 1 1  
W 0.05 -1 1 1 -1 

1.33 -1 -4 -1 -5 -1 
0.05 -1 1 1 -1 

1 

1 
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TABLE 4.-Concluded 

Solution V=1.38 
6 -1 -2 1 

Pa- - - - ~ - - - - - - - - - -. -. -. . - - - -. -. - - - - - - 
PS. ................................. 
Ps. ................................. 
PI- ................................. 
P% - - - - - -. -. -. -. - - - - - - -. . - -. . - - - - - - - 
PII-.. ............................... 
P6. ................................. 
PIS .................................. 
P4. ................................. 

PI0 .................................. 
zi-ci-. ............................ 

PI4 _ _ _ _  - - - - - - - - -. - - -. -. - - -. - - - - - - - -. - 

-1 0.40 1 -1 
1 1.80 1 -1 -10 -5 
0 0.79 -1 1 -4 -3 -3 
5 0.12 1 1 
0 0.17 1 -1 1 -1 
0 0.29 1 -1 1 
0 0.54 1 -1 -4 -6 2 
0 0.37 1 1  

-2 0.31 1 1 
0 0.27 1 1  
0 0.05 -1 1 1 -1 

1.38 0 0 0 0 0 0 -1 0 -10 0 0 -4 0 0 -2 

and 

X,+X2+X3+X,= 1 

later, and if Smith insists upon undertaking a venture 
whose outcome is sure to leave him poorer regardless of 
which c,ourse of action he elects to iiursue, or if he is 
uncertain 11s to whether the “game” is biased in his 
favor, his least cost strategy may still be determined by 
linear programming. In  any event, a negative V can 
always be replaced by two nonnegative variables VI 
and Vz suc.h that V=Vl-Vz. 

With the addition of the required slack variables, the 
linear program becomes the following: 

(Le., the sum of the frequencies of the elements which com- 
prise the decision strategy equals one). 

It should be rioted that me have tacitly assumed here that 
V 2 0 ,  Le., Smith will not knowingly undertake to engage 
in a contest which will result in no financial gain to him. 
Hdwever, this restriction is unimportant 3s will be seen 

Minimbe V subject to 

= V  
= V  
=V 
=V 
=0.12 

-X10 =0.12 
+Xll =0.46 

- XI2 =0.40 + x13 =0.77 
-x14 =0.04 

+Xi, =0.31 
=l .  

Before beginning the simplex computations, it is ex- 
pedient, although not mandatory, to reduce the number 
of equations to be manipulated by selecting the first 

equation as the objechve function and subtracting it in 
turn from the next three equations (sufficient artificial 
variables have been added to produce a basis). 

Minimize 5X1-&-2X4+ X5 subject to 

= O  
= O  
= O  
=0.12 

fx16 =0.12 + XI1 =0.46 
- Xl2 + a 1 7  =0.40 

+Xl, =0.77 
- x 1 4  +XlS  =0.04 

f x 1 5  =0.31 
+XI9 = 1. 
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Note that V has now been eliminated from the constraints, 
hence the question as to whether or not V is negative need 
no longer concern us (i.e., all X,>_O). 

The results of the simplex computation are shown ill 

arrays (A) through (Z) of table 4, with the optimal 
solution to the defined problem revealed in the final array. 
The column vector, denoting the optimal strategy of 
Smith’s fictional opponent Nature, is taken from the 
constant column and is seen to be 

(Xi ,  Xz, X3, X , )=  (0.12, 0.17, 0.40, 0.31). 

By the primal-dual relationship of linear programming, 
Smith’s strategy is obtained by associating the Z,-C, 
values of the final array, after a change in sign, with the 
slack variables of the miginal system, i.e. 

(X5, x,, x,, XJ = - (0, 0, - 1, 0). 

That is, Smith’s optimum strategy is to plant only 
Crop C3. And finally, :array (J) reveals the value of the 
game (to Smith) to be 1.38. 

5. CONCLUSION 

determine an optimal course of action in situations 
involving weather-induced losses or gains. 

In this paper, linear programming techniques were 
applied to solve Gleeson’s minimum economic expecta- 
tion model. It should be stressed, however, we are not 
limited in our applications to a single model. Many 
desired models, including those with nonlinear constraints 
or objective function, or those with constraints subject 
to random variation (stochastic programming) [8] can 
be accommodated with the broad framework of optimiza- 
tion techniques known as “mathematical programming,” 
of which linear programming can be viewed as a subset. 
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